Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Gland Surg ; 13(3): 325-339, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38601284

RESUMO

Background: Breast cancer (BC) is one of the most common malignancies worldwide, and its development is affected in various ways by the tumor microenvironment (TME). Tumor-derived mesenchymal progenitor cells (MPCs), as the most important components of the TME, participate in the proliferation and metastasis of BC in several ways. In this study, we aimed to characterize the genes associated with tumor-derived MPCs and determine their effects on BC cells. Methods: Tumor-derived MPCs and normal breast tissue-derived mesenchymal stem cells (MSCs) were isolated from tissues specimens of patients with BC. We conducted culture and passage, phenotype identification, proliferation and migration detection, inflammatory factor release detection, and other experiments on isolated MPCs from tumors and MSCs from normal breast tissues. Three paired tumor-derived MPCs and normal breast tissue-derived MSCs were then subjected to transcriptome analysis to determine the expression profiles of the relevant genes, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to further confirm gene expression. Subsequently, the overexpression plasmids were transfected into tumor-derived MPCs, and the expression of various inflammatory factors of tumor-derived MPCs and their proliferation were characterized with a cell viability test reagent (Cell Counting Kit 8). Subsequently, the transfected tumor-derived MPCs were cocultured with BC cells using a conditioned medium coculture method to clarify the role of tumor-derived MSCs in BC. Results: Tumor-derived MPCs expressed stem cell characteristics including CD105, CD90, and CD73 and exhibited adipogenic and osteogenic differentiation in vitro. The proliferation of tumor-derived MPCs was significantly lower than that of normal breast tissue-derived MSCs, and the invasive metastatic ability was comparable; however, MPCs were found to release inflammatory factors such as interleukin 6 (IL-6) and transforming growth factor ß (TGF-ß). Transcriptome analysis showed that stomatin (STOM), collagen and calcium binding EGF domains 1 (CCBE1), and laminin subunit alpha 5 (LAMA5) were significantly upregulated in tumor-derived MPCs. Among them, STOM was highly expressed in tumor-derived MPCs, which mediated the slow proliferation of MPCs and promoted the proliferation of BC cells. Conclusions: STOM, CCBE1, and LAMA5 were highly expressed in tumor-derived MPCs, with STOM being found to retard the proliferation of MPCs but promote the proliferation of BC cells. There findings present new possibilities in targeted microenvironmental therapy for BC.

2.
Cell Death Discov ; 10(1): 190, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653740

RESUMO

Pancreatic cancer is one of the most fatal cancers in the world. A growing number of studies have begun to demonstrate that mitochondria play a key role in tumorigenesis. Our previous study reveals that NDUFS2 (NADH: ubiquinone oxidoreductase core subunit S2), a core subunit of the mitochondrial respiratory chain complex I, is upregulated in Pancreatic adenocarcinoma (PAAD). However, its role in the development of PAAD remains unknown. Here, we showed that NDUFS2 played a critical role in the survival, proliferation and migration of pancreatic cancer cells by inhibiting mitochondrial cell death. Additionally, protein mass spectrometry indicated that the NDUFS2 was interacted with a deubiquitinase, OTUB1. Overexpression of OTUB1 increased NDUFS2 expression at the protein level, while knockdown of OTUB1 restored the effects in vitro. Accordingly, overexpression and knockdown of OTUB1 phenocopied those of NDUFS2 in pancreatic cancer cells, respectively. Mechanically, NDUFS2 was deubiquitinated by OTUB1 via K48-linked polyubiquitin chains, resulted in an elevated protein stability of NDUFS2. Moreover, the growth of OTUB1-overexpressed pancreatic cancer xenograft tumor was promoted in vivo, while the OTUB1-silenced pancreatic cancer xenograft tumor was inhibited in vivo. In conclusion, we revealed that OTUB1 increased the stability of NDUFS2 in PAAD by deubiquitylation and this axis plays a pivotal role in pancreatic cancer tumorigenesis and development.

3.
J Cancer Res Clin Oncol ; 150(1): 8, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195952

RESUMO

BACKGROUND: NUDT21 (Nudix Hydrolase 21) has been shown to play an essential role in multiple biological processes. Pancreatic adenocarcinoma (PAAD) is one of the most fatal cancers in the world. However, the biological function of NUDT21 in PAAD remains rarely understood. The aim of this research was to identify the prediction value of NUDT21 in diagnosis, prognosis, immune infiltration, and signal pathway in PAAD. METHODS: Combined with the data in online databases, we analyzed the expression, immune infiltration, function enrichment, signal pathway, diagnosis, and prognosis of NUDT21 in PAAD. Then, the biological function of NUDT21 and its interacted protein in PAAD was identified through plasmid transduction system and protein mass spectrometry. Expression of NUDT21 was further verified in clinical specimens by immunofluorescence. RESULTS: We found that NUDT21 was upregulated in PAAD tissues and was significantly associated with the diagnosis and prognosis of pancreatic cancer through bioinformatic data analysis. We also found that overexpression of NUDT21 enhanced PAAD cells proliferation and migration, whereas knockdown NUDT21 restored the effects through in vitro experiment. Moreover, NDUFS2 was recognized as a potential target of NUDT21.We further verified that the expression of NDUFS2 was positively correlated with NUDT21 in PAAD clinical specimens. Mechanically, we found that NUDT21 stabilizes NDUFS2 and activates the PI3K-AKT signaling pathway. CONCLUSION: Our investigation reveals that NUDT21 is a previously unrecognized oncogenic factor in the diagnosis, prognosis, and treatment target of PAAD, and we suggest that NUDT21 might be a novel therapeutic target in PAAD.


Assuntos
Adenocarcinoma , Fator de Especificidade de Clivagem e Poliadenilação , NADH Desidrogenase , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/genética , Proliferação de Células , NADH Desidrogenase/genética , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator de Especificidade de Clivagem e Poliadenilação/genética
4.
Curr Drug Deliv ; 21(5): 763-774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37157191

RESUMO

BACKGROUND: Most patients who undergo radiotherapy develop radiation skin injury, for which effective treatment is urgently needed. MnSOD defends against reactive oxygen species (ROS) damage and may be valuable for treating radiation-induced injury. Here, we (i) investigated the therapeutic and preventive effects of local multiple-site injections of a plasmid, encoding human MnSOD, on radiation-induced skin injury in rats and (ii) explored the mechanism underlying the protective effects of pMnSOD. METHODS: The recombinant plasmid (pMnSOD) was constructed with human cytomegalovirus (CMV) promoter and pUC-ori. The protective effects of pMnSOD against 20-Gy X-ray irradiation were evaluated in human keratinocytes (HaCaT cells) by determining cell viability, ROS levels, and ferroptosisrelated gene expression. In therapeutic treatment, rats received local multiple-site injections of pMnSOD on days 12, 19, and 21 after 40-Gy γ-ray irradiation. In preventive treatment, rats received pMnSOD injections on day -3 pre-irradiation and on day 4 post-irradiation. The skin injuries were evaluated based on the injury score and pathological examination, and ferroptosis-related gene expression was determined. RESULTS: In irradiated HaCaT cells, pMnSOD transfection resulted in an increased SOD2 expression, reduced intracellular ROS levels, and increased cell viability. Moreover, GPX4 and SLC7A11 expression was significantly upregulated, and erastin-induced ferroptosis was inhibited in HaCaT cells. In the therapeutic and prevention treatment experiments, pMnSOD administration produced local SOD protein expression and evidently promoted the healing of radiation-induced skin injury. In the therapeutic treatment experiments, the injury score in the high-dose pMnSOD group was significantly lower than in the PBS group on day 33 post-irradiation (1.50 vs. 2.80, P < 0.05). In the prevention treatment experiments, the skin injury scores were much lower in the pMnSOD administration groups than in the PBS group from day 21 to day 34. GPX4, SLC7A11, and Bcl-2 were upregulated in irradiated skin tissues after pMnSOD treatment, while ACSL4 was downregulated. CONCLUSION: The present study provides evidence that the protective effects of MnSOD in irradiated HaCaT cells may be related to the inhibition of ferroptosis. The multi-site injections of pMnSOD had clear therapeutic and preventive effects on radiation-induced skin injury in rats. pMnSOD may have therapeutic value for the treatment of radiation-induced skin injury.


Assuntos
Ferroptose , Lesões por Radiação , Humanos , Ratos , Animais , Espécies Reativas de Oxigênio , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Pele/metabolismo , Plasmídeos/genética
5.
Eur J Med Res ; 28(1): 531, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980541

RESUMO

BACKGROUND: The incidence and mortality of clear cell carcinoma of the kidney increases yearly. There are limited screening methods and advances in treating kidney renal clear cell carcinoma (KIRC). It is important to find new biomarkers to screen, diagnose and predict the prognosis of KIRC. Some studies have shown that CD72 influences the development and progression of colorectal cancer, nasopharyngeal cancer, and acute lymphoid leukemia. However, there is a lack of research on the role of CD72 in the pathogenesis of KIRC. This study aimed to determine whether CD72 is associated with the prognosis and immune infiltration of KIRC, providing an essential molecular basis for the early non-invasive diagnosis and immunotherapy of KIRC. METHODS: Using TCGA, GTE, GEO, and ImmPort databases, we obtained the differentially expressed mRNA (DEmRNA) associated with the prognosis and immunity of KIRC patients. We used the Kruskal-Wallis test to identify clinicopathological parameters associated with target gene expression. We performed univariate and multivariate COX regression analyses to determine the effect of target gene expression and clinicopathological parameters on survival. We analyzed the target genes' relevant functions and signaling pathways through enrichment analysis. Finally, the correlation of target genes with tumor immune infiltration was explored by ssGSEA and Spearman correlation analysis. RESULTS: The results revealed that patients with KIRC with higher expression of CD72 have a poorer prognosis. CD72 was associated with the Pathologic T stage, Pathologic stage, Pathologic M stage, Pathologic N stage, Histologic grade in KIRC patients, Laterality, and OS event. It was an independent predictor of the overall survival of KIRC patients. Functional enrichment analysis showed that CD72 was significantly enriched in oncogenic and immune-related pathways. According to ssGSEA and Spearman correlation analysis, CD72 expression was significantly associated with tumor immune cells and immune checkpoints. CONCLUSION: Our study suggests that CD72 is associated with tumor immunity and may be a biomarker relevant to the diagnosis and prognosis of KIRC patients.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Nasofaríngeas , Humanos , Prognóstico , Proteínas de Checkpoint Imunológico , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Rim , Neoplasias Renais/genética , Antígenos de Diferenciação de Linfócitos B , Antígenos CD
6.
Genes (Basel) ; 14(8)2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37628568

RESUMO

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are biologically active substances secreted by MSCs into the extracellular matrix that play an immunomodulatory role in skin damage repair. To investigate the mechanism of MSC-EVs in reducing inflammation, promoting angiogenesis, promoting the proliferation and migration of epithelial cells and fibroblasts, and extracellular matrix remodeling during wound healing, we focused on the effects of EVs on multiple cell types at various stages of skin injury. A literature review was conducted to explore related research on the influence of MSC-EVs on the types of cells involved in wound healing. MSC-EVs show a strong regulatory ability on immune cells involved in the regulation of inflammation, including macrophages, neutrophils, and T cells, and other cells involved in tissue proliferation and remodeling, such as fibroblasts, keratinocytes, and endothelial cells, during wound healing in in vitro and in vivo experiments, which substantially promoted the understanding of wound healing in the field of trauma medicine. MSC-EVs have potential applications in combating poor skin wound healing. Elucidating the mechanism of action of EVs in the wound-healing process would greatly advance the understanding of therapeutic wound healing.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Células Endoteliais , Inflamação , Cicatrização , Regeneração
7.
Tissue Cell ; 83: 102124, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269748

RESUMO

BACKGROUND: Wound healing is a complex and dynamic process that involves a series of cellular and molecular events. Mesenchymal stem cells (MSCs) and their exosomes (MSC-Exos) have crucial functions in cutaneous wound healing. MiR-17-92 is a multifunctional microRNA (miRNA) cluster that plays vital roles in tissue development and tumor angiogenesis. This study aimed to explore the function of miR-17.92 in wound healing as a component of MSC-Exos. METHODS: Human MSCs were cultured in serum-free medium, and exosomes were collected by ultracentrifugation. The levels of miR-17-92 in MSCs and MSC-Exos were determined by quantitative real-time polymerase chain reaction. MSC-Exos were topically applied to full-thickness excision wounds in the skin of miR-17-92 knockout (KO) and wild-type (WT) mice. The proangiogenic and antiferroptotic effects of MSC-Exos overexpressing miR-17-92 were assayed by evaluating the relative levels of angiogenic and ferroptotic markers. RESULTS: MiRNA-17-92 was found to be highly expressed in MSCs and enriched in MSC-Exos. Moreover, MSC-Exos promoted the proliferation and migration of human umbilical vein endothelial cells in vitro. KO of miR-17-92 effectively attenuated the promotion of wound healing by MSC-Exos. Furthermore, exosomes derived from miR-17-92-overexpressing human umbilical cord-derived MSCs accelerated cell proliferation, migration, angiogenesis, and enhanced against erastin-induced ferroptosis in vitro. miR-17-92 plays a key role in the protective effects of MSC-Exos against erastin-induced ferroptosis in HUVECs CONCLUSION: These findings suggest that miR-17-92 participates in the repair ability of MSC-Exos and that miR-17-92-overexpressing exosomes may represent a new strategy for cutaneous wound repair.


Assuntos
Exossomos , Ferroptose , Células-Tronco Mesenquimais , MicroRNAs , Animais , Humanos , Camundongos , Exossomos/genética , Células Endoteliais da Veia Umbilical Humana , MicroRNAs/genética , MicroRNAs/farmacologia , Cicatrização/genética
8.
PLoS One ; 18(6): e0286967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310943

RESUMO

As information and communication technology advances rapidly, real-time live online broadcasting has emerged as a novel social media platform. In particular, live online broadcasts have gained widespread popularity among audiences. However, this process can cause environmental problems. When audiences imitate live content and perform similar field activities, it can have a negative effect on the environment. In this study, an extended theory of planned behavior (TPB) was used to explore how online live broadcasts relate to environmental damage from the perspective of human behavior. A total of 603 valid responses were collected from a questionnaire survey, and a regression analysis was conducted to verify the hypotheses. The findings showed that the TPB can be applied to account for the formation mechanism of behavioral intention of field activities caused by online live broadcasts. The mediating effect of imitation was verified using the above relationship. These findings are expected to provide a practical reference for the control of online live broadcast content and guidance on public environmental behavior.


Assuntos
Intenção , Mídias Sociais , Humanos , Comunicação , Ciência da Informação , Tecnologia da Informação
9.
Fitoterapia ; 168: 105544, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182750

RESUMO

A new alkaloid, Orychophragine D (1), together with three known alkaloids, were isolated from the seeds of Orychophragmus violaceus. Orychophragine D represented the first example of 2-piperazinone fused 5-azacytosine skeleton. Their structures and absolute configurations were determined by spectroscopic analyses and X-ray crystallography. Compared to Ex-RAD, compound 1 exhibited a significant radioprotective activity on cell survival of irradiated HUVEC. In vivo experiments showed that 1 not only remarkably enhanced the survival of irradiated mice in 30 days, but also significantly promoted the recovery of the blood system of irradiated mice. These results suggested that 1 was valuable for further research as promising radioprotectors.


Assuntos
Alcaloides , Brassicaceae , Protetores contra Radiação , Animais , Camundongos , Alcaloides/farmacologia , Alcaloides/análise , Brassicaceae/química , Cristalografia por Raios X , Estrutura Molecular , Sementes/química , Protetores contra Radiação/química , Protetores contra Radiação/isolamento & purificação , Protetores contra Radiação/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Irradiação Corporal Total , Análise de Sobrevida , Contagem de Células Sanguíneas , Raios gama
10.
J Inflamm Res ; 16: 2023-2039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197438

RESUMO

Purpose: Mesenchymal stem cells (MSCs) have become novel therapeutic agents for the treatment of inflammatory bowel diseases (IBDs). However, the precise cellular and molecular mechanisms by which MSCs restore intestinal tissue homeostasis and repair the epithelial barrier have not been well elucidated. This study aimed to investigate the therapeutic effects and possible mechanisms of human MSCs in the treatment of experimental colitis. Methods: We performed an integrative transcriptomic, proteomic, untargeted metabolomics, and gut microbiota analyses in a dextran sulfate sodium (DSS)-induced IBD mouse model. The cell viability of IEC-6 cells was determined by Cell Counting Kit-8 (CCK-8) assay. The expression of MUC-1 and ferroptosis-related genes were determined by immunohistochemical staining, Western blot, and real-time quantitative polymerase chain reaction (RT-qPCR). Results: Mice treated with MSCs showed notable amelioration in the severity of DSS-induced colitis, which was associated with reduced levels of proinflammatory cytokines and restoration of the lymphocyte subpopulation balance. Treatment with MSC restored the gut microbiota and altered their metabolites in DSS-induced IBD mice. The 16s rDNA sequencing showed that treatment with MSC modulated the composition of probiotics, including the upregulation of the contents of Firmicutes, Lactobacillus, Blautia, Clostridia, and Helicobacter bacteria in mouse colons. Protein proteomics and transcriptome analyses revealed that pathways related to cell immune responses, including inflammatory cytokines, were suppressed in the MSC group. The ferroptosis-related gene, MUC-1, was significantly upregulated in the MSC-treated group. MUC-1-inhibition experiments indicated that MUC-1 was essential for epithelial cell growth. Through overexpression of MUC-1, it showed that upregulation of SLC7A11 and GPX4, and downregulation of ACSL4 in erastin and RSL3-treated IEC-6 cells, respectively. Conclusion: This study described a mechanism by which treatment with MSCs ameliorated the severity of DSS-induced colitis by modulating the gut microbiota, immune response, and the MUC-1 pathway.

11.
Am J Cancer Res ; 13(3): 992-1003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034225

RESUMO

Pancreatic ductal adenocarcinoma is a highly malignant cancer with poor prognosis, for which effective therapeutic strategies are urgently needed. The dual-specificity phosphatase PTPMT1 is localized in mitochondria and highly expressed in various cancers. Here, we investigated the function of PTPMT1 in pancreatic ductal adenocarcinoma. We inhibited its expression in pancreatic cancer cell lines using siRNAs or the specific PTPMT1 inhibitor alexidine dihydrochloride and observed that PTPMT1 silencing in pancreatic cancer cell lines drastically reduced cell viability, caused mitochondrial damage, and impaired mitochondrial function. Co-immunoprecipitation analysis demonstrated that PTPMT1 could interact with SLC25A6 and NDUFS2, indicating that it may modulate mitochondrial function via the SLC25A6-NDUFS2 axis. Collecively, our data highlight PTPMT1 as an important factor in pancreatic ductal adenocarcinoma and a potential therapeutic target.

12.
Curr Drug Deliv ; 20(9): 1368-1379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35702802

RESUMO

BACKGROUND: Pulmonary fibrosis (PF) is a chronic and progressive interstitial lung disease. There is no effective treatment for PF. Hepatocyte growth factor (HGF) has anti-inflammatory and antifibrotic effects but has limited potential owing to its short half-life. METHODS: To increase the transfection efficiency of pVAX-HGF, we prepared polyethyleneiminepolyethylene glycol: polyethyleneimine/pVAX-HGF (PEG-PEI: PEI/pVAX-HGF) nanocomposite loaded with a plasmid encoding the HGF gene. The PEG-PEI:PEI/pVAX-HGF characteristics, including morphology, particle size, zeta-potential, and DNA entrapment efficiency, were investigated. The pVAX-HGF nanocomposites with low toxicity and high transfection efficiency were screened by cell viability assay and cell transfection. The antifibrotic effect of pVAX-HGF nanocomposite on PF rats induced by bleomycin (BLM) was evaluated by pulmonary function measurement, pathological examination and collagen content assay. RESULTS: Different nanocomposites were prepared to deliver pVAX-HGF, in which mix1 (PEGPEI: PEI/pVAX-HGF) has lower potential and better entrapment ability. PEG-PEI: PEI/pVAX-HGF (N/P=25) nanocomposite with low toxicity and high transfection efficiency was administered to PF rats. After treatment with mix 1/pVAX-HGF, the index of lung function(including EF50, MV, TV, PEF and PIF) in mix 1/pVAX-HGF group was higher than that of the PF group. The number of cells in BALF of the mix 1/pVAX-HGF group was significantly lower than that of the PF groups, and the content of hydroxyproline(HYP) and collagen Type I (Col-I) in the lung of the mix 1/pVAX-HGF group was much lower than that of the PF groups in the early stage. The result of pathological examination showed that rats in the mix1/pVAX-HGF group showed obviously reduced alveolar septal thickening, fewer infiltrated inflammatory cells and less collagen deposition. CONCLUSION: The PEG-PEI:PEI/pVAX-HGF nanocomposite can ameliorate PF induced by BLM. The pVAX-HGF nanocomposite is a latent therapeutic strategy for PF.


Assuntos
Nanocompostos , Fibrose Pulmonar , Ratos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/genética , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/uso terapêutico , Bleomicina/toxicidade , Bleomicina/uso terapêutico , Terapia Genética
13.
Stem Cell Res Ther ; 13(1): 267, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729643

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are a heterogeneous group of subpopulations with differentially expressed surface markers. CD146 + MSCs correlate with high therapeutic and secretory potency. However, their therapeutic efficacy and mechanisms in premature ovarian failure (POF) have not been explored. METHODS: The umbilical cord (UC)-derived CD146 +/- MSCs were sorted using magnetic beads. The proliferation of MSCs was assayed by dye670 staining and flow cytometry. A mouse POF model was established by injection of cyclophosphamide and busulfan, followed by treatment with CD146 +/- MSCs. The therapeutic effect of CD146 +/- MSCs was evaluated based on body weight, hormone levels, follicle count and reproductive ability. Differential gene expression was identified by mRNA sequencing and validated by RT-PCR. The lymphocyte percentage was detected by flow cytometry. RESULTS: CD146 +/- MSCs had similar morphology and surface marker expression. However, CD146 + MSCs exhibited a significantly stronger proliferation ability. Gene profiles revealed that CD146 + MSCs had a lower levels of immunoregulatory factor expression. CD146 + MSCs exhibited a stronger ability to inhibit T cell proliferation. CD146 +/- MSCs treatment markedly restored FSH and E2 hormone secretion level, reduced follicular atresia, and increased sinus follicle numbers in a mouse POF model. The recovery function of CD146 + MSCs in a reproductive assay was slightly improved than that of CD146 - MSCs. Ovary mRNA sequencing data indicated that UC-MSCs therapy improved ovarian endocrine locally, which was through PPAR and cholesterol metabolism pathways. The percentages of CD3, CD4, and CD8 lymphocytes were significantly reduced in the POF group compared to the control group. CD146 + MSCs treatment significantly reversed the changes in lymphocyte percentages. Meanwhile, CD146 - MSCs could not improve the decrease in CD4/8 ratio induced by chemotherapy. CONCLUSION: UC-MSCs therapy improved premature ovarian failure significantly. CD146 +/- MSCs both had similar therapeutic effects in repairing reproductive ability. CD146 + MSCs had advantages in modulating immunology and cell proliferation characteristics.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Animais , Antígeno CD146/genética , Antígeno CD146/metabolismo , Modelos Animais de Doenças , Feminino , Atresia Folicular , Hormônios/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Insuficiência Ovariana Primária/metabolismo , RNA Mensageiro/metabolismo
14.
Ann Transl Med ; 10(6): 360, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35434026

RESUMO

Background: Retroperitoneal liposarcoma (RPLS) is a rare, biologically heterogeneous tumor with distinct clinical characteristics, such as frequent local recurrence, repeated relapse, and rare distant metastasis. No effective targeted therapy is available for RPLS. Here, we aim to determine the pathological functions and therapeutic potential of carbohydrate sulfotransferase 15 (CHST15) in RPLS. Methods: Tumor-derived mesenchymal progenitor cells (MPCs) and normal adipose derived mesenchymal stem cells (MSCs) were obtained from patients with RPLS. MPCs and MSCs were isolated and characterized based on surface markers, proliferation, and differentiation using flow cytometry and molecular staining. Transcriptome analysis was performed to decipher expression profile of differentiation-related genes in 3 paired MSCs and MPCs. Further confirmation of genes were performed using quantitative real-time polymerase chain reaction (qRT-PCR). Plasmids overexpressing CHST15 were transfected into adipose MSCs to examine fibrosis-related gene expression at mRNA level by real-time PCR. Results: The tumor stromal-derived MPCs expressed CD105, CD73, and CD90, and exhibited osteogenic and adipogenic differentiation potential in vitro. The proliferation of tumor-derived MPCs was significantly lower than that of normal adipose-derived MSCs (P<0.001). Transcriptome analysis revealed upregulation of IL-7R, ALPL, PKNOX2, and CHST15 in tumor-derived MPCs. CHST15 was highly expressed in tumor-derived MPCs (P<0.001). CHST15 mediated fibrosis-related FGF2 gene expression in MSCs (P<0.05) and MPCs (P<0.001). Conclusions: CHST15 is upregulated in tumor-derived MPCs and regulates fibrosis in RPLS. This provides clues for development of novel therapeutic strategies by targeting CHST15-induced MPC activation in RPLS.

15.
Ann Transl Med ; 10(4): 224, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35280420

RESUMO

Background: Ferroptosis is a type of cell death driven by iron accumulation and lipid peroxidation, which is involved in the pathogenesis of various tumors. Small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) is a critical SUMO-specific protease, which controls multiple cellular signaling processes. However, the roles and mechanisms of SENP1-mediated protein SUMOylation in the regulation of cell death and ferroptosis remain unexplored. Methods: The gene expression of SENP1 and ferroptosis-related genes in samples of lung cancer patient and cells were determined by immunohistochemical staining, real-time polymerase chain reaction (RT-qPCR) and Western blot. The association of gene expression with the survival rate of lung cancer patients was analyzed from public database. The erastin and cisplatin was used to induce ferroptosis, and cell ferroptosis were determined by evaluated lipid-reactive oxygen species (ROS), cell viability and electron microscopy. The protein interaction was determined by immunoprecipitation (IP) and shotgun proteomics analysis. An in vivo tumor transplantation model of immunodeficient mice was used to evaluate the effect of SENP1 on tumor growth in vivo. Results: SENP1 is aberrantly overexpressed in lung cancer cells and is associated with the low survival rate of patients. SENP1 inhibition by short hairpin RNA transduction or a specific inhibitor suppressed the proliferation and growth of lung cancer cells both in vitro and in vivo. SENP1 overexpression protected lung cancer cells from ferroptosis induced by erastin or cisplatin. Transcriptome and proteomics profiles revealed the involvement of SUMOylation regulation of the inflammation signal A20 in SENP1 inhibition-induced ferroptosis. Functional studies proved that A20 functions as a positive inducer and enhances the ferroptosis of A549 cells. A20 was shown to interact with ACSL4 and SLC7A11 to regulate the ferroptosis of lung cancer cells. Conclusions: SENP1 was identified as a suppressor of ferroptosis through a novel network of A20 SUMOylation links ACSL4 and SLC7A11 in lung cancer cells. SENP1 inhibition promotes ferroptosis and apoptosis and represents a novel therapeutic target for lung cancer therapy.

16.
Asian J Surg ; 45(11): 2214-2223, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35000852

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a fatal malignancy due to the lack of early detection method, therapeutic drug and target. We noticed that the expression of Protein Tyrosine Phosphatase Mitochondria1(PTPMT1) is upregulated in PDAC. However, its role in pancreatic cancer remains unknown. METHODS: We first analyzed the expression of PTPMT1 from 50 PDAC patients. Secondly, the survival proportions of different PTPMT1-expressed patients were analyzed. Then, the role and mechanism of PTPMT1 in PDAC were studied by lentivirus transduction system. RESULTS: PTPMT1 was upregulated in PDAC and patients with high PTPMT1 expression displayed lower overall survival rate. Knockdown of PTPMT1 increased the sensitivity to erastin or RSL3 induced ferroptosis. Mechanically, knockdown of PTPMT1 resulted in upregulated Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) and downregulated Solute Carrier Family 7 Member 11 (SLC7A11). In addition, SLC7A11 was upregulated in PDAC tumor tissue and correlated positively with the expression of PTPMT1. However, the expression of ACSL4 was downregulated in PDAC and negatively correlated with the expression of PTPMT1. CONCLUSION: Our study demonstrates that PTPMT1 is upregulated in PDAC and PTPMT1 inhibits ferroptosis by suppressing the expression of ACSL4 and upregulating SLC7A11 in Panc-1 cells, suggesting PTPMT1 might be a potential prognosis biomarker and therapeutic target in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Ferroptose , Neoplasias Pancreáticas , Biomarcadores , Carcinoma Ductal Pancreático/genética , Coenzima A , Ferroptose/genética , Humanos , Ligases , PTEN Fosfo-Hidrolase , Neoplasias Pancreáticas/genética , Piperazinas , Proteínas Tirosina Fosfatases , Neoplasias Pancreáticas
17.
Adv Sci (Weinh) ; 9(5): e2103838, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923767

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) possess the remarkable ability to regenerate the whole blood system in response to ablated stress demands. Delineating the mechanisms that maintain HSPCs during regenerative stresses is increasingly important. Here, it is shown that Hemgn is significantly induced by hematopoietic stresses including irradiation and bone marrow transplantation (BMT). Hemgn deficiency does not disturb steady-state hematopoiesis in young mice. Hemgn-/- HSPCs display defective engraftment activity during BMT with reduced homing and survival and increased apoptosis. Transcriptome profiling analysis reveals that upregulated genes in transplanted Hemgn-/- HSPCs are enriched for gene sets related to interferon gamma (IFN-γ) signaling. Hemgn-/- HSPCs show enhanced responses to IFN-γ treatment and increased aging over time. Blocking IFN-γ signaling in irradiated recipients either pharmacologically or genetically rescues Hemgn-/- HSPCs engraftment defect. Mechanistical studies reveal that Hemgn deficiency sustain nuclear Stat1 tyrosine phosphorylation via suppressing T-cell protein tyrosine phosphatase TC45 activity. Spermidine, a selective activator of TC45, rescues exacerbated phenotype of HSPCs in IFN-γ-treated Hemgn-/- mice. Collectively, these results identify that Hemgn is a critical regulator for successful engraftment and reconstitution of HSPCs in mice through negatively regulating IFN-γ signaling. Targeted Hemgn may be used to improve conditioning regimens and engraftment during HSPCs transplantation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Interferon gama , Animais , Hematopoese , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Interferon gama/metabolismo , Camundongos , Condicionamento Pré-Transplante
18.
Leuk Lymphoma ; 63(4): 963-974, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34847837

RESUMO

Ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) has been recently linked to tumor development. However, its role in modulating multiple myeloma (MM) disease progression remains unclear. Here, we demonstrated that CD138+ cells isolated from MM patients presented with higher expression of ENPP2 compared with CD138- cells. Treatment of MM cells with IL-6 resulted in ENPP2 upregulation. ENPP2 overexpression promoted proliferation, inhibited apoptosis, increased lysophosphatidic acid (LPA) generation, and upregulated osteoclastogenesis mediator expression in MM cells. In contrast, ENPP2 inhibition induced apoptosis, suppressed proliferation and survival, decreased LPA generation and downregulated osteoclastogenesis mediator expression. In an MM xenograft mouse model, ENPP2 knockdown significantly reduced MM tumor burden by inhibiting cell proliferation and inducing apoptosis. Furthermore, ENPP2 knockdown decreased the levels of LPA, osteoclastogenesis mediators in sera of mice with MM. Our findings revealed the tumor-promoting role of ENPP2 in MM, thus providing new molecular evidence for targeting the ENPP2-LPA axis in MM therapy.


Assuntos
Mieloma Múltiplo , Animais , Apoptose/genética , Proliferação de Células , Humanos , Camundongos , Mieloma Múltiplo/genética , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Ativação Transcricional
19.
Front Cell Dev Biol ; 9: 679866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858969

RESUMO

Bronchopulmonary dysplasia (BPD) is a common pulmonary complication observed in preterm infants that is composed of multifactorial pathogenesis. Current strategies, albeit successful in moderately reducing morbidity and mortality of BPD, failed to draw overall satisfactory conclusion. Here, using a typical mouse model mimicking hallmarks of BPD, we revealed that both cord blood-derived mononuclear cells (CB-MNCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) are efficient in alleviating BPD. Notably, infusion of CB-MNCs has more prominent effects in preventing alveolar simplification and pulmonary vessel loss, restoring pulmonary respiratory functions and balancing inflammatory responses. To further elucidate the underlying mechanisms within the divergent therapeutic effects of UC-MSC and CB-MNC, we systematically investigated the long noncoding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) and circular RNA (circRNA)-miRNA-mRNA networks by whole-transcriptome sequencing. Importantly, pathway analysis integrating Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG)/gene set enrichment analysis (GSEA) method indicates that the competing endogenous RNA (ceRNA) network is mainly related to the regulation of GTPase activity (GO: 0043087), extracellular signal-regulated kinase 1 (ERK1) and ERK2 signal cascade (GO: 0070371), chromosome regulation (GO: 0007059), and cell cycle control (GO: 0044770). Through rigorous selection of the lncRNA/circRNA-based ceRNA network, we demonstrated that the hub genes reside in UC-MSC- and CB-MNC-infused networks directed to the function of cell adhesion, motor transportation (Cdk13, Lrrn2), immune homeostasis balance, and autophagy (Homer3, Prkcd) relatively. Our studies illustrate the first comprehensive mRNA-miRNA-lncRNA and mRNA-miRNA-circRNA networks in stem cell-infused BPD model, which will be valuable in identifying reliable biomarkers or therapeutic targets for BPD pathogenesis and shed new light in the priming and conditioning of UC-MSCs or CB-MNCs in the treatment of neonatal lung injury.

20.
J Pharm Pharm Sci ; 24: 488-498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34644525

RESUMO

PURPOSE: Silicosis is a serious occupational disease that is characterized by pulmonary infiltrates and fibrosis and is often refractory to current treatments. New therapeutic strategies for silicosis are needed. Hepatocyte growth factor (HGF) is a latent anti-inflammatory and anti-fibrotic growth factor. METHODS: We prepared a polyethyleneimine-polyethylene glycol/pHGF/hyaluronic acid (PEG-PEI/pHGF/HA) nanomaterials loaded with plasmid DNA encoding HGF gene to increase its transfection efficiency. The characterization, including DNA entrapment efficiency, morphology, particle size, and zeta-potential of PEG-PEI/pHGF/HA was studied. And a PEG-PEI/pHGF/HA (N/P=30:1) nanoparticle with low toxicity and high transfection efficiency was used in treatment for silicosis in mice. RESULTS: The results showed that the human HGF expression in the lungs of the mice was increased, and the inflammatory cell infiltration and fibrous collagen deposition was significantly reduced. CONCLUSION: Therefore, PEG-PEI/pHGF/HA nanoparticle warrant further investigation and may be a potential therapeutic strategy for silicosis.


Assuntos
Terapia Genética/métodos , Fator de Crescimento de Hepatócito/administração & dosagem , Sistemas de Liberação de Fármacos por Nanopartículas , Silicose/tratamento farmacológico , Células A549 , Animais , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/uso terapêutico , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/genética , Silicose/patologia , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...